
Security Assessment

Manifold - Ash Solidity
May 12th, 2021

Summary
This report has been prepared for Manifold - Ash Solidity smart contracts, to discover issues and

vulnerabilities in the source code of their Smart Contract as well as any contract dependencies that were

not part of an officially recognized library. A comprehensive examination has been performed, utilizing

Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases given they are currently missing in the

repository;

Provide more comments per each function for readability, especially contracts are verified in public;

Provide more transparency on privileged activities once the protocol is live.

Majority of the findings are of informational nature with one minor finding. The minor finding comprise the

lack of input sanitization of the function parameter.

Manifold - Ash Solidity Security Assessment

Overview

Project Summary

Project Name Manifold - Ash Solidity

Description

The audited codebase comprise the `Burn` ERC20 and `ASHRateEngine` contracts.
The `Burn` contract allows receiving of `ERC721` and `ERC1155` tokens, burns them
and in return mints `Burn` tokens for the sender depending upon the rate stored for
that `ERC721` or `ERC1155` contract in `ASHRateEngine` contract.

Platform Ethereum

Language Solidity

Codebase
https://github.com/manifoldxyz/ash-
solidity/tree/dcbff2889f1f10df663d8dcc06d89f6de4b75a3b/contracts

Commits

1. https://github.com/manifoldxyz/ash-
solidity/tree/dcbff2889f1f10df663d8dcc06d89f6de4b75a3b/contracts

2. https://github.com/manifoldxyz/ash-
solidity/commit/462e2e919c2546a4c8ac691fa003bc39220ab499

Audit Summary

Delivery Date May 12, 2021

Audit Methodology Static Analysis, Manual Review

Key Components

Manifold - Ash Solidity Security Assessment

Vulnerability Summary

Total Issues 6

Critical 0

Major 0

Medium 0

Minor 1

Informational 5

Discussion 0

Audit Scope

ID file SHA256 Checksum

ASH ASH.sol 5269466328a2d3fcfb93571332f0756d128338e8e6dfcf0a8e4b166c84e054c4

MIG Migrations.sol 4fd6092bdfa8b42f19d535c5ac69c4323b0b894717c699e58d5552eeabd04cd4

RMZ libraries/RealMath.sol eb10affe00d89d10f8aea1211433ea1ae75c5d77d4015fbc10a680f4292894ca

ASR rates/ASHRateEngine.sol 44ce9d88fc84047d090cb8f913f5d4b5b37ca198ec3942cb8c6d8a864ff4b3ff

IAS rates/IASHRateEngine.sol 5383c462d4c94a2fe1509d8da6a00cf56071a8057aa418e6236af65ad75fcf96

Manifold - Ash Solidity Security Assessment

Findings

ID Title Category Severity Status

ASH-01 Unlocked Compiler Version Language Specific Informational Resolved

ASR-01 Unlocked Compiler Version Language Specific Informational Resolved

ASR-02 Redundant Variable Initialization Coding Style Informational Resolved

ASR-03 Inefficient storage read Gas Optimization Informational Resolved

ASR-04 Lack of validation for the function parameter Logical Issue Minor Acknowledged

IAS-01 Unlocked Compiler Version Language Specific Informational Resolved

Manifold - Ash Solidity Security Assessment

6
Total Issues

Critical 0 (0.00%)

Major 0 (0.00%)

Medium 0 (0.00%)

Minor 1 (16.67%)

Informational 5 (83.33%)

Discussion 0 (0.00%)

https://accelerator.audit.certikpowered.info/project/fbe1b810-b1ab-11eb-8b0c-65a0f0c7b8c1/findings?fid=1620664537101
https://accelerator.audit.certikpowered.info/project/fbe1b810-b1ab-11eb-8b0c-65a0f0c7b8c1/findings?fid=1620663855673
https://accelerator.audit.certikpowered.info/project/fbe1b810-b1ab-11eb-8b0c-65a0f0c7b8c1/findings?fid=1620663961355
https://accelerator.audit.certikpowered.info/project/fbe1b810-b1ab-11eb-8b0c-65a0f0c7b8c1/findings?fid=1620664257215
https://accelerator.audit.certikpowered.info/project/fbe1b810-b1ab-11eb-8b0c-65a0f0c7b8c1/findings?fid=1620664479108
https://accelerator.audit.certikpowered.info/project/fbe1b810-b1ab-11eb-8b0c-65a0f0c7b8c1/findings?fid=1620664579058

ASH-01 | Unlocked Compiler Version

Category Severity Location Status

Language Specific Informational ASH.sol: 3 Resolved

Description

The contract has unlocked compiler version. An unlocked compiler version in the source code of the

contract permits the user to compile it at or above a particular version. This, in turn, leads to differences in

the generated bytecode between compilations due to differing compiler version numbers. This can lead to

an ambiguity when debugging as compiler specific bugs may occur in the codebase that would be hard to

identify over a span of multiple compiler versions rather than a specific one.

Recommendation

We advise that the compiler version is instead locked at the lowest version possible that the contract can

be compiled at. For example, for version v0.7.0 the contract should contain the following line: pragma

solidity 0.8.2; .

Alleviation

Alleviations were applies as of commit hash 462e2e919c2546a4c8ac691fa003bc39220ab499 .

Manifold - Ash Solidity Security Assessment

https://accelerator.audit.certikpowered.info/project/fbe1b810-b1ab-11eb-8b0c-65a0f0c7b8c1/findings?fid=1620664537101
https://github.com/manifoldxyz/ash-solidity/blob/dcbff2889f1f10df663d8dcc06d89f6de4b75a3b/contracts/ASH.sol
https://github.com/manifoldxyz/ash-solidity/blob/dcbff2889f1f10df663d8dcc06d89f6de4b75a3b/contracts/ASH.sol#L3

ASR-01 | Unlocked Compiler Version

Category Severity Location Status

Language Specific Informational rates/ASHRateEngine.sol: 3 Resolved

Description

The contract has unlocked compiler version. An unlocked compiler version in the source code of the

contract permits the user to compile it at or above a particular version. This, in turn, leads to differences in

the generated bytecode between compilations due to differing compiler version numbers. This can lead to

an ambiguity when debugging as compiler specific bugs may occur in the codebase that would be hard to

identify over a span of multiple compiler versions rather than a specific one.

Recommendation

We advise that the compiler version is instead locked at the lowest version possible that the contract can

be compiled at. For example, for version v0.7.0 the contract should contain the following line: pragma

solidity 0.8.2; .

Alleviation

Alleviations were applied as of commit hash 462e2e919c2546a4c8ac691fa003bc39220ab499 .

Manifold - Ash Solidity Security Assessment

https://accelerator.audit.certikpowered.info/project/fbe1b810-b1ab-11eb-8b0c-65a0f0c7b8c1/findings?fid=1620663855673
https://github.com/manifoldxyz/ash-solidity/blob/dcbff2889f1f10df663d8dcc06d89f6de4b75a3b/contracts/rates/ASHRateEngine.sol
https://github.com/manifoldxyz/ash-solidity/blob/dcbff2889f1f10df663d8dcc06d89f6de4b75a3b/contracts/rates/ASHRateEngine.sol#L3

ASR-02 | Redundant Variable Initialization

Category Severity Location Status

Coding Style Informational rates/ASHRateEngine.sol: 26 Resolved

Description

All variable types within Solidity are initialized to their default empty value, which is usually their zeroed out

representation.

uint / int : All uint and int variable types are initialized at 0

address : All address types are initialized to address(0)

byte : All byte types are initialized to their byte(0) representation

bool : All bool types are initialized to false

ContractType : All contract types (i.e. for a given contract ERC20 {} its contract type is ERC20) are

initialized to their zeroed out address (i.e. for a given contract ERC20 {} its default value is

ERC20(address(0)))

struct : All struct types are initialized with all their members zeroed out according to this table

Recommendation

We advise that the linked initialization statements are removed from the codebase to increase legibility.

Alleviation

Alleviations were applied as of commit hash 462e2e919c2546a4c8ac691fa003bc39220ab499 .

Manifold - Ash Solidity Security Assessment

https://accelerator.audit.certikpowered.info/project/fbe1b810-b1ab-11eb-8b0c-65a0f0c7b8c1/findings?fid=1620663961355
https://github.com/manifoldxyz/ash-solidity/blob/dcbff2889f1f10df663d8dcc06d89f6de4b75a3b/contracts/rates/ASHRateEngine.sol
https://github.com/manifoldxyz/ash-solidity/blob/dcbff2889f1f10df663d8dcc06d89f6de4b75a3b/contracts/rates/ASHRateEngine.sol#L26

ASR-03 | Inefficient storage read

Category Severity Location Status

Gas Optimization Informational rates/ASHRateEngine.sol: 86~91 Resolved

Description

The code on aforementioned lines read _contractTokenRateClass[tokenContract][args[0]] from

contract's storage twice which causes increased gas cost as the code can be rectified to limit the storage

read to only once.

Recommendation

We advise to rectify the code on the aforementioned lines to limit the storage read of

_contractTokenRateClass[tokenContract][args[0]] to only once to save gas cost associated with the

extra storage read operation.

uint8 rateClass = _contractTokenRateClass[tokenContract][args[0]];uint8 rateClass = _contractTokenRateClass[tokenContract][args[0]];
if (rateClass == 0) {if (rateClass == 0) {
 rateClass = _contractRateClass[tokenContract]; rateClass = _contractRateClass[tokenContract];
}}

Alleviation

Alleviations were applied as of commit hash 462e2e919c2546a4c8ac691fa003bc39220ab499 .

Manifold - Ash Solidity Security Assessment

https://accelerator.audit.certikpowered.info/project/fbe1b810-b1ab-11eb-8b0c-65a0f0c7b8c1/findings?fid=1620664257215
https://github.com/manifoldxyz/ash-solidity/blob/dcbff2889f1f10df663d8dcc06d89f6de4b75a3b/contracts/rates/ASHRateEngine.sol
https://github.com/manifoldxyz/ash-solidity/blob/dcbff2889f1f10df663d8dcc06d89f6de4b75a3b/contracts/rates/ASHRateEngine.sol#L86

ASR-04 | Lack of validation for the function parameter

Category Severity Location Status

Logical Issue Minor rates/ASHRateEngine.sol: 48, 63 Acknowledged

Description

The require checks on the aforementioned lines ensure that the rateClass value should be less than 3

yet it does not ensure that value should be greater than 0.

Recommendation

We advise to extend the require checks on the aforementioned lines to ensure that the rateClass value

should be greater than 0.

Alleviation

Alleviations are not considered with the Manifold team stating "This is intentional in order to provide ability

to unset a rate class by providing a 0 value. uint already dictates that it can't be negative."

Manifold - Ash Solidity Security Assessment

https://accelerator.audit.certikpowered.info/project/fbe1b810-b1ab-11eb-8b0c-65a0f0c7b8c1/findings?fid=1620664479108
https://github.com/manifoldxyz/ash-solidity/blob/dcbff2889f1f10df663d8dcc06d89f6de4b75a3b/contracts/rates/ASHRateEngine.sol
https://github.com/manifoldxyz/ash-solidity/blob/dcbff2889f1f10df663d8dcc06d89f6de4b75a3b/contracts/rates/ASHRateEngine.sol#L48
https://github.com/manifoldxyz/ash-solidity/blob/dcbff2889f1f10df663d8dcc06d89f6de4b75a3b/contracts/rates/ASHRateEngine.sol#L63

IAS-01 | Unlocked Compiler Version

Category Severity Location Status

Language Specific Informational rates/IASHRateEngine.sol: 3 Resolved

Description

The contract has unlocked compiler version. An unlocked compiler version in the source code of the

contract permits the user to compile it at or above a particular version. This, in turn, leads to differences in

the generated bytecode between compilations due to differing compiler version numbers. This can lead to

an ambiguity when debugging as compiler specific bugs may occur in the codebase that would be hard to

identify over a span of multiple compiler versions rather than a specific one.

Recommendation

We advise that the compiler version is instead locked at the lowest version possible that the contract can

be compiled at. For example, for version v0.7.0 the contract should contain the following line: pragma

solidity 0.8.2; .

Alleviation

Alleviations are applied as of commit hash 462e2e919c2546a4c8ac691fa003bc39220ab499 .

Manifold - Ash Solidity Security Assessment

https://accelerator.audit.certikpowered.info/project/fbe1b810-b1ab-11eb-8b0c-65a0f0c7b8c1/findings?fid=1620664579058
https://github.com/manifoldxyz/ash-solidity/blob/dcbff2889f1f10df663d8dcc06d89f6de4b75a3b/contracts/rates/IASHRateEngine.sol
https://github.com/manifoldxyz/ash-solidity/blob/dcbff2889f1f10df663d8dcc06d89f6de4b75a3b/contracts/rates/IASHRateEngine.sol#L3

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation findings relate to mishandling of math formulas, such as overflows, incorrect

operations etc.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions

being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may

result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result of a

struct assignment operation affecting an in-memory struct rather than an in-storage one.

Language Specific

Manifold - Ash Solidity Security Assessment

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or

delete.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different code,

such as a constructor assignment imposing different require statements on the input variables than a setter

function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw format and

should otherwise be specified as constant contract variables aiding in their legibility and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to compile

using the specified version of the project.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

Manifold - Ash Solidity Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the Company

only to the extent permitted under the terms and conditions set forth in the Agreement. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes without CertiK’s prior

written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

Manifold - Ash Solidity Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

Manifold - Ash Solidity Security Assessment

